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Abstract

The spreading and solidification processes of a molten metal droplet impinging on a heated solid surface are studied

theoretically. The present work is based on Madejski’s splat-quench solidification model proposed for the application of

plasma spray coating. In contrast to the original model, the initial conditions are modeled in the present work at an

instant away from the start of impact. The numerical results on the evolution of the droplet spreading obtained from

the present model are compared with the predictions of previous model and available experimental data reported in the

literature. It is shown that the present model predictions are in good agreement with the experimental measurements for

the inertia driven droplet impact cases. It is further shown that the present model is more suitable for the droplet impact

cases showing low Stefan number and high Peclet number.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Modeling the impact process of a molten metal

droplet impinging on a flat surface is received consid-

erable attention in recent years due to its importance in

several advanced technologies [1–5]. The problem in-

volves an analysis of the radial spreading of molten

metal liquid, caused mainly by the inertia of the

impinging droplet, along with the heat transfer and

solidification processes occurring simultaneously. Sev-

eral theoretical studies have been carried out over years

to predict the outcomes of the impact process. Zhao

et al. [6,7] and Pasandideh-Fard et al. [8] proposed detail

models by solving the Navier–Stokes equation coupled

with the energy equation. Their theoretical predictions

of the droplet spreading were in good agreement with

the experimental data. However, the numerical proce-

dures adopted in those models were computationally

expensive. Such detailed models are more useful to get a

deep fundamental understanding on the physical pro-
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cesses involved in the impact phenomenon. On the other

hand, many researchers proposed simple analytical

solutions to estimate the outcomes of droplet impact, for

example the maximum spread radius, Rmax and thick-

ness, bmax of the metal splat resulting from the impact

[9–15]. Evidently, these results are of limited use due to

the assumptions involved in the analysis.

Madejski [10] proposed a simple model for the im-

pact of molten metal droplets based on the principle of

energy conservation. The model can be used to predict

the temporal evolution of the spreading droplet radius,

R, however no attempt was made by Madejski to solve

the governing equations numerically. Delplanque and

Rangel [13] incorporated major modifications into the

Madejski’s original model [10] and solved the governing

differential equation numerically to obtain the temporal

variation of R and other relevant parameters. The im-

proved model [13], hereafter referred in this paper as DR

model, retained the original assumptions and salient

features of the Madejski’s model [10] and corrections

were given for the flow field description and viscous

dissipation losses [13]. A detailed parametric study was

carried out without making any comparison of the

model predictions with the experimental results [13].
ed.
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Nomenclature

b liquid layer thickness of spreading droplet
�b0 the ratio of liquid layer thickness of

spreading droplet in the absence of solidifi-

cation to droplet diameter before impact

C time dependent quantity shown in velocity

field

Cp specific heat

Ca capillary number

D droplet diameter before impact

Ed dissipation energy

Ek kinetic energy

Ep potential energy

hf latent heat of fusion

K solidification parameter

Oh Ohnesorge number

Pe Peclet number

R radius of spreading droplet

Re Reynolds number

r radial coordinate

St Stefan number

T0 substrate temperature

Tm melting temperature of droplet material

t time
~t non-dimensionalized time

t� dimensionless time based on impinging

droplet parameters

U solidification constant

Vs volume of solidified metal layer

W droplet impact velocity

Wc liquid contact line velocity

We Weber number

y thickness of solidified metal layer

z normal coordinate

Greek symbols

a thermal diffusivity

d ratio of solidified metal layer thickness with

solidification to liquid layer thickness with-

out solidification

K dimensionless term used in kinetic energy

equation

e dimensionless positive quantity used in the

estimation of initial radius

r surface tension

l viscosity

q density of solid

ql density of liquid

h dynamic contact angle

hs static contact angle

/ non-dimensionalized liquid layer thickness

s time at which freezing begins at any radial

location

n non-dimensionalized radius of spreading

droplet

Subscripts

max maximum spread

0 initial condition

r radial

z normal
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The simplicity of the Madejski model [10] and its im-

proved version (DR model) [13] is mainly attributed to

the basic assumptions made in the models. In order to

formulate the initial conditions, the models assumed that

the impinging spherical droplet takes the shape of cylin-

der immediately after the instant t ¼ 0 at which the

droplet touches the surface. The initial radius, R0 was

expressed as a fraction of the initial droplet diameter, D,
i.e., R0 ¼ eD, where e is an assumed positive quantity. It

must be emphasized here that the initial conditions for the

droplet radius and velocity were expressed in these models

[10,13] as functions of the assumed parameter e. Madejski

[10] assumed e ¼ 0:5 for the derivation of Rmax and later,

Delplanque and Rangel [13] showed that e ¼ 0:74 is the

only physically possible value. However, the comparison

of the model predictions with experimental results was

not quite satisfactory and a better agreement was ob-

served for e ¼ 0:39 in the early stages of impact [16]. Note

that the parameter e was treated like an arbitrary

parameter in these models and any improper selection of e
may be affecting the model predictions significantly.
In the present work, we attempt to improve the

predictions of the improved version of the original

Madejski splat-quench solidification model (DR model)

by proposing modifications for the initial conditions

used to solve the governing differential equation. We

keep the salient features of the original Madejski model

remain intact in our modified model except that the

initial conditions are derived at the instant t0 ¼ D
W instead

of t0 ¼ 0. The improvements noted from the present

model are shown through the comparisons of present

results with the corresponding predictions of DR model

and experimental data.
2. Mathematical model

2.1. Droplet spreading

Consider a molten metal droplet of diameter, D im-

pinges on a flat surface with velocity, W along the nor-

mal to the flat surface. The temperature of molten metal
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droplet and flat substrate surface are, respectively, Tm
and T0. The governing differential equation for the

droplet spreading process based on the conservation of

mechanical energy is expressed as

d

dt
ðEk þ Ep þ EdÞ ¼ 0 ð1Þ

where Ek is the kinetic energy, Ep the potential energy,

Ed the viscous dissipation energy, and t, the time mea-

sured from the instant at which the droplet touches the

impact surface. As in the previous studies employing

Madejski’s model [10,13,16,17], we assume that the

impinging droplet takes the shape of cylinder with

diameter, 2R and height, b during the spreading process.

Note that earlier models implemented this assumption

immediately after the instant t ¼ 0. However, the

experimental studies on the impact of a droplet on solid

surfaces reveal that the cylindrical disc assumption may

not be justifiable during the early stages of impact pro-

cess [7,15,18–22]. It is shown that the droplet shape may

either be a truncated sphere or a combined spherical and

cylindrical disc form in the time interval showing

t�ðt� ¼ tW
D Þ values ranging between 0 and 1. With D and

W , respectively, as the length and velocity scales, the

time at which the droplet flattens completely and forms

a cylindrical disc can be expressed as D
W .

The impinging droplet spreads out radially and at-

tains a cylindrical disc of radius, R0 at time, t0 ¼ D
W (Fig.

1(a)). By equating the total impulse of the force applied
Fig. 1. The schematic illustrations showing the droplet shapes

assumed in the present model at the instant t0 ¼ D
W . (a) Without

solidification and (b) with solidification.
to the impact surface at t0 ¼ D
W from the impinging

droplet to the initial axial momentum of the droplet,

Roisman et al. [23] proposed an approximate model to

determine b0, the initial thickness of the liquid layer at

the instant t0 ¼ D
W , from the impinging droplet parame-

ters. In their work, the simplified axial force balance

equation is approximated as

3Weþ 5ð1� cos hÞRe�b0 ¼ 10ReWe�b30 ð2Þ

The Weber number, We and Reynolds number, Re are

defined, respectively, as We ¼ qlW
2D

r and Re ¼ qlWD
l , where

ql is the density, l, the viscosity, and r, the surface

tension of molten metal liquid. The dynamic contact

angle, h is estimated from the static contact angle, hs as

h ¼ cos�1 1

(
� 2 tanh 5:16

Ca
1þ 1:31Ca0:99

� �0:706
" #)

þ hs

ð3Þ

where Ca ¼ lWc

r is the capillary number based on the

liquid contact line velocity, Wc. Appendix A shows the

details on the derivation of governing differential equa-

tion for the spreading droplet and written as

d

dt
3

10
ql

dR
dt

� �2

R2b
�"

þ 11

7
b3
�
þ rðR2ð1� cos hÞ

þ 2RbÞ
#
þ lR2

b
dR
dt

� �2
3

2

�
þ 72

5

b2

R2

�
¼ 0 ð4Þ

Note that the governing equation used in DR model

is similar to Eq. (4) except that the role of capillary

forces at the contact line of the spreading droplet is

ignored.

2.2. Droplet solidification

The solidification process starts immediately after the

initial instant of impact (t ¼ 0) and a solid metal layer

starts growing over the impact surface depending on the

temperature gradient from the droplet liquid to the im-

pact surface. The thickness of the solidified metal layer,

y is estimated from the Neumann solution of the one

dimensional Stefan problem as

y ¼ U
ffiffiffiffi
at

p
ð5Þ

Here a is the thermal diffusivity of the droplet material

and U , the solidification constant, expressed mathe-

matically as a function of the Stefan number, St,

St ¼
ffiffiffi
p

p U
2

� �
erf

U
2

� �
exp

U 2

4

� �
ð6Þ

where St ¼ CpðTm�T0Þ
hf

. Cp and hf are the specific heat and

latent heat of fusion of the droplet material, respectively.
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Note that Eqs. (5) and (6) are based on the assumption

that the liquid phase is stagnant and hence, the con-

vecting effect of the liquid phase on the solidification

process is ignored in the present model.

The solidification process may be influencing the flow

field in the molten liquid layer and hence the fluid

pressure exerted on the impact surface. By using Eq. (5),

the thickness of solidified metal layer at the instant

t0 ¼ D
W is estimated as

y t0

�
¼ D

W

�
¼ y0 ¼ U

ffiffiffiffiffiffiffiffi
a
D
W

r
¼ Uffiffiffiffiffi

Pe
p

� �
D ð7Þ

�y0 ¼
y0
D

¼ Uffiffiffiffiffi
Pe

p ð8Þ

where Pe ¼ WD
a is the Peclet number. It is assumed here in

the present work that �y0 � �b0 and the solidification

process occurring within the short interval of time ½0; DW �
during the beginning of impact process may not be

altering the flow characteristics within the liquid layer

significantly. Thus the effect of solidification on Eq. (2) is

assumed to be negligible and consequently, the present

model is more appropriate for slow solidification prob-

lems.

As the droplet is spreading along the radial direction

(Fig. 2), the thickness of solidified metal layer at any

radial location, r is written as

yðrÞ ¼ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � sÞ

p
ð9Þ

where s is the time at which freezing begins at a given r.
Below, r < R0 and s ¼ 0, y is estimated from Eq. (5). The

volume of the solidified metal layer, Vs is estimated as

Vs ¼ pR2
0y0 þ

Z s¼t

s¼0

2pRðsÞU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � sÞ

p
dRðsÞ ð10Þ

By including the effect of solidification, the thickness of

liquid layer, b is written as

b ¼ ðp=6ÞD3ql � qVs
pR2ql

ð11Þ

where q is the density of solidified metal layer.
Fig. 2. The schematic sketch of the spreading droplet shape

after the initial time, t0.
2.3. Initial conditions

In the present model, the initial conditions are de-

rived at the instant t0 ¼ D
W . The initial radius, R0 is ex-

pressed in terms of �b0 as

R t0

�
¼ D

W

�
¼ R0 ¼

D2

6�b0

� �12

ð12Þ

The initial thickness of molten liquid layer at t0 ¼ D
W is

expressed by including the solidification process as

b t0

�
¼ D

W

�
¼ b0 ¼ D �b0

�
� Uffiffiffiffiffi

Pe
p

�
ð13Þ

In the absence of any solidification process, the value of

U is taken as zero and b0 is expressed only as a function

of �b0. The initial average radial velocity, ðdRdt Þ0 at t0 ¼ D
W is

derived by inserting the value of Ek calculated at t0 ¼ D
W

in Eq. (A.6) given in Appendix A and expressed as

dR
dt

t0

�
¼ D

W

�
¼ dR

dt

� �
0

¼ W

5

3
K

1� U
�b0

ffiffiffiffiffi
Pe

p
� �

1þ 66

7
�b30 1� U

�b0
ffiffiffiffiffi
Pe

p
� �2

" #
0
BBBB@

1
CCCCA

1=2

ð14Þ

where

K ¼ 1þ 12

We
� 3

5Re
1
�b30

 
þ 12

�b0

!
� 2 1� cos hð Þ

We�b0

� 1

We

ffiffiffiffiffiffiffiffiffiffi
96b0
D

r
� U
�b0

ffiffiffiffiffi
Pe

p ð15Þ

Further details on the derivation of Eq. (14) are given in

Appendix B.

2.4. Non-dimensionalization

The energy conservation equation (Eq. (4)) and ini-

tial conditions (Eqs. (12)–(14)) are non-dimensionalized

by using the variables n ¼ R
R0
, / ¼ b

R0
, and ~t ¼ Wt

R0
. After

simplification, Eq. (4) becomes

d

d~t
3

10

dn
d~t

� �2

/ n2
�2

4 þ 11

7
/2

�

þ
ffiffiffiffiffiffiffi
6�b0

p
We

nðnð1� cos hÞ þ 2/Þ

3
5

þ
ffiffiffiffiffi
�b0

p
Re

n2

/
dn
d~t

� �2
ffiffiffiffiffi
27

2

r 
þ 72

ffiffiffi
6

p

5

/2

n2

!
¼ 0 ð16Þ
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where

/¼
ffiffiffi
6

p
ð�b0Þ3=2

n2
1

"
� K

ffiffi
~t

p
 

þ 2

Z ~t

0

nðtÞdnðtÞ
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~t� tÞ

q
dt

!#

ð17Þ

and

K ¼ q
ql

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

61=2Peð�b0Þ5=2

s
ð18Þ

The simplified non-dimensional initial conditions are

expressed as

~t t0

�
¼ D

W

�
¼ ~t0 ¼

ffiffiffiffiffiffiffi
6�b0

p
ð19Þ

nð~t0Þ ¼ n0 ¼ 1:0 ð20Þ

/ð~t0Þ ¼ /0 ¼
ffiffiffiffiffiffiffi
6�b0

p
�b0

�
� Uffiffiffiffiffi

Pe
p

�
ð21Þ

and

dn
d~t

ð~t0Þ ¼
dn
d~t

� �
0

¼
5

3
K

1� U
�b0

ffiffiffiffiffi
Pe

p
� �

1þ 66

7
�b30 1� U

�b0
ffiffiffiffiffi
Pe

p
� �2

" #
0
BBBB@

1
CCCCA

1=2

ð22Þ
3. Results and discussion

The theoretical prediction on the evolution of R is

obtained by solving Eqs. (16)–(22) numerically. The

predictions are made until the radial velocity of the

spreading droplet reaches zero computationally. For all

the calculations reported in this paper, it is ensured that

the radial velocity of the spreading droplet is converging

to zero. In order to show the improvements noted in the

present model calculations, the present predictions are

compared with the corresponding numerical predictions

of DR model.

3.1. Droplet impact without solidification

The time evolution of the spreading droplet diameter

(2R) is shown in Fig. 3 for different impact conditions.

As seen in the figure, the agreement between the present

model predictions and experimental data is improved

both qualitatively and quantitatively. The predictions of

DR model agree reasonably with the experimental data

during the early stages of impact, however relies strongly
on the choice of e. In general, the modified model is

slightly over predicting the values of R from the exper-

imental data. This may be attributed to the assumptions

and approximations involved in the formulation of Eqs.

(2) and (14).

The comparison of results shown in Fig. 3 clearly

indicates that the initial conditions used to solve the

governing equation (Eq. (4)) play a major role in the

predictions of the evolution of R. Fig. 4 shows the var-

iation of non-dimensional radial velocity, ðdðR=DÞ
dt� Þ with

time for the droplet impact case shown in Fig. 3(c). In

the case of DR model predictions, the assumed para-

meter e significantly influences the radial velocity during

the early stages of impact as shown in Fig. 4. A

noticeable change in the variation of spreading velocity

is observed between the present model and DR model.

The prediction of a larger droplet radius by DR model is

mainly due to the higher radial velocity shown in Fig. 4.

Thus the improvements noted in the present model

predictions of R are attributed to the initial radial

velocity relation given in Eq. (14).

The present model predictions on the maximum

droplet radius, Rmax reached during the impact process is

shown in Fig. 5 for different droplet impact experiments

reported in the literature. A total of 33 experiments with

different impact conditions are considered for the com-

parison. As mentioned earlier, the present model is over

predicting Rmax with a variation of 20% from the

experimental values. Fig. 6 shows the model predictions

on the non-dimensional time parameter, ðtWD Þmax;0:95, at

which the spreading droplet radius reaches 0:95Rmax for

different droplet impact experiments. The predicted

values of ðtWD Þmax;0:95 are more distributed around the 45�
line compared to the predictions of Rmax shown in Fig. 5.

3.2. Droplet impact with solidification

The primary cause for the spreading droplet solidi-

fication is the temperature gradient exists between the

droplet liquid and the impact surface. Therefore the ef-

fect of solidification can be seen from the variation of St.
For instance, a rapid solidification of the spreading

droplet liquid can be observed for the droplet impact

with high St. Fig. 7 shows the time evolution of R pre-

dicted by the present model for the molten tin droplets

impinging on the stainless steel surfaces kept at high

temperatures and hence low St cases. As done for the

droplet impact cases without solidification, the results

are presented in Fig. 7 along with the predictions of DR

model and experimental data. In general, the predictions

of R obtained from the present model calculations are in

good agreement with the experimental data, both qual-

itatively and quantitatively, and the predictions of DR

model are far deviated from the experimental data. The

model predictions of Rmax for different cases of molten

metal droplet impact are shown in Fig. 8. A good



           

Fig. 4. Comparison of the present model results on the varia-

tion of non-dimensional radial velocity with the predictions of

DR model for the droplet impact case shown in Fig. 3(c).

Fig. 3. Comparison of the present model results on the evolution of the spreading liquid droplets with the predictions of DR model

and experimental data. The experimental data are shown with filled circles (d) and the numerical predictions obtained from the present

model are shown with a thick continuous line ( ). The predictions of DR model for different values of e are shown with thin lines:

(– – –) e ¼ 0:74, (––––) e ¼ 0:5, (–Æ–Æ–) e ¼ 0:39. The experimental data are taken from the literature. (a) Kim and Chun [21], (b)

Roisman et al. [23], (c) Rioboo et al. [22], and (d) Roisman et al. [23].
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agreement is observed between the experimental data

and present model predictions particularly for the

droplet impact with high We. Note that the present

calculation is ignored the heat transfer processes exist

between the spreading droplet liquid and the substrate.

Since the temperature gradient for the droplet impact

cases shown in Figs. 7 and 8 is small, the above

assumption may not be expected to alter the conclusions

arrived from this study.

3.3. Discussion

It is shown in the previous sections that the present

model, based on the splat-quench solidification model

proposed by Madejski [10], predicts the spreading and

solidification processes of the molten metal droplets

impinging on the solid surfaces quite well compared to

the earlier version, DR model [13]. The theoretical pre-

dictions obtained from the previous studies based on the



Fig. 5. The present model predictions on the maximum droplet

radius, Rmax for the droplet impact experiments reported in

earlier work. (�) Roisman et al. [23], (j) Rioboo et al. [22], (m)

Fukai et al. [19], (.) Kim and Chun [21], (r) Aziz and Chandra

[15], and (s) Mao et al. [20].

Fig. 6. The present model predictions of ðtWD Þmax;0:95 for the

droplet impact experiments reported in earlier work. (�) Ro-

isman et al. [23], (j) Rioboo et al. [22], (m) Fukai et al. [19], and

(r) Aziz and Chandra [15].
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original Madejski model [13,14,17] are predominantly

depending on the choice of e and this constraint is re-

moved in the present modified model as the initial

conditions are directly obtained from the impinging

droplet parameters. The major limitation of the present

model is that it ignores the calculations within the time

interval ½0; DW �. This restricts the model applications for

the droplet impact problems involving rapid solidifica-

tion process.

Although the present predictions of Rmax obtained for

the impact of molten solder metal droplets [26] are

comparable with the experimental measurements (indi-

cated by open circles in Fig. 8) the present model may

not be suitable for such droplet impact cases. At low We,
the droplet spreading process is influenced significantly

by the capillary forces and hence, the solidification

process may be either competing with or dominating the

spreading process. This may be resulting in a complete

solidification of the spreading droplet liquid before

reaching the instant t0 ¼ D
W . Note that the droplet impact

cases shown in Fig. 7 are in the regime of high impact We
and Re. Under these conditions, the radial spreading is

dominating the solidification process due to high fluid

inertia and hence, the approximations involved in Eq.

(14) may not be influencing the predictions significantly.

For the droplet impacts involving rapid solidification

process, the majority of molten metal liquid solidifies

before reaching the instant tW
D ¼ 1. A non-dimensional

parameter, d is defined as the ratio of the solidified metal

layer height to the metal liquid layer height in the ab-

sence of solidification. At t0 ¼ D
W , d is expressed as

d0 ¼
y0
�b0D

¼ 1
�b0

Uffiffiffiffiffi
Pe

p ð23Þ

The present model is applicable for the molten droplet

impact cases with d0 ! ½0; 1Þ. From Eq. (6), U can be

approximated in terms of St by employing curve fitting

technique as U �
ffiffiffiffiffi
5St
3

q
, and hence

d0 �
1
�b0

ffiffiffiffiffiffiffi
5St
3Pe

r
ð24Þ

By following Eq. (24), it can be stated that the present

model is more suitable for the molten droplet impact

cases with a lower value of St
Pe and a higher value of �b0.

The values of St
Pe for the molten solder droplet impact

cases shown in Fig. 8 (indicated by open circles) are in

the range 2.84· 10�2 to 8.09· 10�2, which is one order of

magnitude higher than the cases shown in Fig. 7(a)

(StPe ¼ 1:7� 10�3) and 7(b) (StPe ¼ 8:0� 10�4).
4. Conclusions

The impact behavior of the molten metal droplets is

studied theoretically by formulating a model based on

the improved version of the original Madejski’s splat-

quench solidification model. The salient features of the

present model are mainly confined to the initial condi-

tions proposed to solve the governing energy equation.

The new initial conditions are modeled at time t0 ¼ D
W

from the start of impact. The numerical predictions on

the evolution of the spreading droplet radius are ob-

tained for different droplet impact cases and compared

with the experimental data reported in the literature. The

qualitative and quantitative agreements between the

current predictions and experimental data are good. It is

shown from qualitative arguments that the current

model is more suitable for the impact problems of mol-

ten metal droplets involving slow solidification process.



Fig. 7. Comparison of the present model results on the evolution of the spreading molten tin droplets with the predictions of DR

model and experimental data. The legends are as shown in the caption of Fig. 3. The experimental data are taken from the literature.

(a) Pasandideh-Fard et al. [8], and (b) Yang et al. [25].

Fig. 8. The present model predictions on the maximum droplet

radius, Rmax for the molten metal droplet impact experiments

reported in earlier work. (�) Aziz and Chandra [15], (j)

Pasandideh-Fard et al. [8], (m) Yang [25], and (s) Attinger

et al. [26].
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Appendix A. The governing differential equation for the

droplet spreading process

The governing differential equation for the droplet

deformation process based on the conservation of

mechanical energy is expressed as

d

dt
ðEk þ Ep þ EdÞ ¼ 0 ðA:1Þ
The expressions for the energy terms Ek and Ed shown in

Eq. (A.1) can be obtained from the similar procedure

followed in DR model [13]. The flow field in the

spreading liquid layer is described by [24]

Wz ¼ 2C
z3

3

�
� bz2

�
ðA:2Þ

and

Wr ¼ Crð2zb� z2Þ ðA:3Þ

where C is a time dependent quantity and expressed in

terms of dR
dt , the average radial velocity on the periphery

of the spreading droplet, as

C ¼ 3

2Rb2
dR
dt

ðA:4Þ

The kinetic energy term Ek is evaluated from

Ek ¼ p
Z R

0

rdr
Z b

0

qlðW 2
x þ W 2

r Þdz ðA:5Þ

By substituting Eqs. (A.2) and (A.3) in Eq. (A.5), Ek is

expressed as

Ek ¼
3

10
pql

dR
dt

� �2

R2b
�

þ 11

7
b3
�

ðA:6Þ

The rate of viscous dissipation, dEd

dt is evaluated from

dEd

dt
¼
Z
V
UdV ðA:7Þ

where

U ¼ l 2
oWr

or

� �2
"

þ 2
W 2

r

r2
þ 2

oWz

oz

� �2

þ oWr

or

� �2
#

ðA:8Þ
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By using Eqs. (A.2), (A.3), (A.7) and (A.8),

dEd

dt
¼ plR2

b
dR
dt

� �2
3

2

�
þ 72

5

b2

R2

�
ðA:9Þ

The estimation of Ep proposed in DR model is not in-

cluded the effect of capillary forces at the contact line of

the spreading droplet. Though the role of capillary for-

ces is less significant during the initial spreading regime,

it becomes more important towards the maximum

spreading regime at which the inertial forces become

comparable or small. By including the capillary forces at

the contact line, Ep is expressed as

Ep ¼ rpR2ð1� cos hÞ þ r2pRb ðA:10Þ

By using Eqs. (A6), (A.9) and (A.10), the equation for the

droplet spreading process, Eq. (A.1) can be written as

d

dt
3

10
ql

dR
dt

� �2

R2b
�"

þ 11

7
b3
�
þ rðR2ð1� coshÞ þ 2RbÞ

#

þ lR2

b
dR
dt

� �2
3

2

�
þ 72

5

b2

R2

�
¼ 0 ðA:11Þ

Appendix B. The derivation for the initial radial velocity

The principle of energy conservation at the instant

t0 ¼ D
W is written as

½KE
n

þ PE�liquid þ ½Energy due to wetting�

þ ½KEþ Viscous dissipation�losses
o

t0¼D
W

¼ f½KEþ PE�liquidgt¼0:

The initial kinetic and potential energies of the

impinging droplet are estimated as

fðKEÞliquidgt¼0 ¼
pD3

6

� �
1

2
qlW

2

� �
ðB:1Þ

and

fðPEÞliquidgt¼0 ¼ rðpD2Þ ðB:2Þ

At the instant t0 ¼ D
W , it is expressed that

f½KE�liquidgt0¼D
W
¼ Ek t0

�
¼ D

W

�
ðB:3Þ

f½PE�liquidgt0¼D
W
¼ rðpR2

0 þ 2pR0b0Þ ðB:4Þ

and

f½KE�lossesgt0¼D
W
¼ ðpR2

0y0Þ
1

2
qlW

2

� �

¼ pqlW
2D3 U

12�b0
ffiffiffiffiffi
Pe

p
� �

ðB:5Þ

The total viscous dissipation losses at t0 ¼ D
W is calcu-

lated from
f½Viscous dissipation�lossesgt0¼D
W

¼
Z D=W

0

Z R0

0

Z b0

0

2prUdr ðB:6Þ

Since the present model ignores the effect of solidifica-

tion process on the molten metal liquid layer during the

time interval ½0; DW �, no attempt is made in the present

work to modify the viscous dissipation losses for the

solidification process. Note that the flow field of the

spreading droplet described in the present work is sim-

ilar to the flow field used by Roisman et al. [23] and

hence, by following the procedure adopted by Roisman

et al. [23], the viscous dissipation is expressed as

f½Viscous dissipation�lossesgt0¼D
W

¼ pqlD
3W 2 1

Re
1

20�b30

 
þ 3

5�b0

!
ðB:7Þ

The energy due to wetting is written as

½Energy due to wetting�t0¼D
W
¼ rðpR2

0 cos hÞ ðB:8Þ

By substituting Eqs. (B.1)–(B.8) in the energy conser-

vation relation, the kinetic energy of the spreading

droplet at t0 ¼ D
W is expressed as

Ek t
�

¼ D
W

�
¼ Ek0 ¼ Kð�b0;Re;We; hÞ

pqlD
3W 2

12

� �
ðB:9Þ

where

K ¼ 1þ 12

We
� 3

5Re
1
�b30

 
þ 12

�b0

!
� 2ð1� cos hÞ

We�b0

� 1

We

ffiffiffiffiffiffiffiffiffiffi
96b0
D

r
� U
�b0

ffiffiffiffiffi
Pe

p ðB:10Þ

By comparing Eq. (B.10) with Eq. (A.6) shown in

Appendix A, the initial spreading velocity is obtained as

dR
dt

t
�

¼ D
W

�
¼ dR

dt

� �
0

¼ W

5

3
K

1� U
�b0

ffiffiffiffiffi
Pe

p
� �

1þ 66

7
�b30 1� U

�b0
ffiffiffiffiffi
Pe

p
� �2

" #
0
BBBB@

1
CCCCA

1=2

ðB:11Þ
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